from llama_cpp import Llama import tkinter as tk from tkinter import ttk import threading class LlmPage(tk.Frame): def __init__(self, parent, app_data): super().__init__(parent) self.app = parent self.app_data = app_data tk.Label(self, text="Notes", font=self.app_data.heading_font).grid(row=0, column=0, sticky="ew", pady=2, padx=2) tk.Label(self, text="Press the generate button and wait for your notes to generate.", font=self.app_data.paragraph_font, wraplength=400, justify="left").grid(row=1, column=0, sticky="ew", pady=2, padx=2) self.text_widget = tk.Text(self, font=self.app_data.paragraph_font, wrap="word") self.text_widget.grid(row=2, column=0, sticky="nsew", pady=6, padx=6) self.start_button = ttk.Button(self, text="Start Operation", command=self.start_llama_operation) self.start_button.grid(row=3, column=0, sticky="ew", pady=2, padx=2) def start_llama_operation(self): if self.app_data.modified_keywords is None: self.text_widget.insert(tk.END, "Keywords have not been set.") else: self.text_widget.delete('1.0', tk.END) self.text_widget.insert(tk.END, "Please wait...") operation_thread = threading.Thread(target=self.run_llama_operation, args=(self.app_data.modified_keywords,)) # Pass data explicitly operation_thread.start() def run_llama_operation(self, llmTopics): try: print("##### Started Llama...") print(llmTopics) # Example: Llama class must be imported correctly here llm = Llama(model_path="/home/jrosh/.local/share/nomic.ai/GPT4All/gpt4all-falcon-newbpe-q4_0.gguf", n_ctx=2048, ) # output = llm.create_chat_completion( # messages=[ # {"role": "system", "content": "You are a teacher explaining in great detail given topics divided by new line."}, # {"role": "user", "content": llmTopics} # Use local variable passed to thread # ] # ) output = llm( f"Genereate comprehensive, informative and factual descriptions for the provided keywords '{llmTopics}", # Prompt max_tokens=0, # Generate up to 32 tokens, set to None to generate up to the end of the context window ) """Generate text from a prompt. Args: prompt: The prompt to generate text from. suffix: A suffix to append to the generated text. If None, no suffix is appended. max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx. temperature: The temperature to use for sampling. top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841 typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666. logprobs: The number of logprobs to return. If None, no logprobs are returned. echo: Whether to echo the prompt. stop: A list of strings to stop generation when encountered. frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt. presence_penalty: The penalty to apply to tokens based on their presence in the prompt. repeat_penalty: The penalty to apply to repeated tokens. top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 stream: Whether to stream the results. seed: The seed to use for sampling. tfs_z: The tail-free sampling parameter. Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/. mirostat_mode: The mirostat sampling mode. mirostat_tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. mirostat_eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. model: The name to use for the model in the completion object. stopping_criteria: A list of stopping criteria to use. logits_processor: A list of logits processors to use. grammar: A grammar to use for constrained sampling. logit_bias: A logit bias to use. Raises: ValueError: If the requested tokens exceed the context window. RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt. Returns: Response object containing the generated text. """ print(output) #print(output['choices'][0]['message']['content']) self.text_widget.after(0, self.update_text_widget, output['choices'][0]) print("##### Llama Finished") except Exception as e: print(f"Error during Llama operation: {e}") self.text_widget.after(0, self.update_text_widget, "An error occurred, please try again.") def update_text_widget(self, content): if self.winfo_exists(): self.text_widget.delete('1.0', tk.END) self.text_widget.insert(tk.END, content)